Institution name: Tyndall Centre for Climate Change Research and School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom contact person: Erik Buitenhuis e031@uea.ac.uk number of files: 76 (including this readme) list of file names: HI04_DICRIVER.nc HI04_DOCRIVER.nc HI04_FE80RIVER.nc HI04_GRID.nc HI04_monthly_AVTZ.nc HI04_monthly_BCaCO3.nc HI04_monthly_BSI1.nc HI04_monthly_BSI.nc HI04_monthly_CALC.nc HI04_monthly_DIC.nc HI04_monthly_DOC.nc HI04_monthly_dpCO2.nc HI04_monthly_ETOT.nc HI04_monthly_EXPC100.nc HI04_monthly_EXPCACO3100.nc HI04_monthly_EXPCACO3.nc HI04_monthly_EXPPOC.nc HI04_monthly_FER.nc HI04_monthly_fgCO2.nc HI04_monthly_fgO2.nc HI04_monthly_FRIVER.nc HI04_monthly_ICEC.nc HI04_monthly_ICET.nc HI04_monthly_INTCRES.nc HI04_monthly_INTPP.nc HI04_monthly_MERV.nc HI04_monthly_MMXL.nc HI04_monthly_NPP.nc HI04_monthly_NPPPHY1.nc HI04_monthly_NPPPHY2.nc HI04_monthly_NPPPHY9.nc HI04_monthly_O2.nc HI04_monthly_PCO2s.nc HI04_monthly_PFE.nc HI04_monthly_PHY1FE.nc HI04_monthly_PHY1.nc HI04_monthly_PHY2FE.nc HI04_monthly_PHY2.nc HI04_monthly_PHY9FE.nc HI04_monthly_PHY9.nc HI04_monthly_PHYCHL1.nc HI04_monthly_PHYCHL2.nc HI04_monthly_PHYCHL9.nc HI04_monthly_PO4.nc HI04_monthly_POCl.nc HI04_monthly_POCs.nc HI04_monthly_QSW.nc HI04_monthly_QTOT.nc HI04_monthly_QWAT.nc HI04_monthly_RDN.nc HI04_monthly_REMIN.nc HI04_monthly_RGPFT1.nc HI04_monthly_RGPFT2.nc HI04_monthly_SALT.nc HI04_monthly_SFFE.nc HI04_monthly_Si.nc HI04_monthly_SSH.nc HI04_monthly_SSS.nc HI04_monthly_SST.nc HI04_monthly_TALK.nc HI04_monthly_TEMP.nc HI04_monthly_TOTCHL.nc HI04_monthly_TOTPHY.nc HI04_monthly_TOTZOO.nc HI04_monthly_VERW.nc HI04_monthly_ZMXL.nc HI04_monthly_ZONU.nc HI04_monthly_ZOO1.nc HI04_monthly_ZOO2.nc HI04_NITRIVER.nc HI04_PlankTOM5_3_hindcast_variables.xls HI04_PlankTOM5_3_MAREMIP_readme HI04_PHOSRIVER.nc HI04_POCRIVER.nc HI04_SILRIVER.nc PlankTOM10.pdf description of PFTs: PHY1: Diatoms PHY2: Coccolithophores PHY3: Mixed phytoplankton ZOO1: microzooplankton ZOO2: mesozooplankton For further description, and details on the choice of PFTs, see http://lgmacweb.env.uea.ac.uk/green_ocean/model/code_description/Tex/eco/ECO1.html http://lgmacweb.env.uea.ac.uk/greeneurocean/model/PlankTOM10.pdf The above file is also submitted with the model results. Note that this describes PlankTOM10, but it also describes where PlankTOM5.3 is different and if the extra PFTs are ignored it fully describes the PlankTOM5.3 model. Le Quere, C., Harrison, S. P., Prentice, I. C., Buitenhuis, E. T., Aumont, O., Bopp, L., Claustre, H., Cotrim da Cunha, L., Geider, R., Giraud, X., Klaas, C., Kohfeld, K., Legendre, L., Manizza, M., Platt, T., Rivkin, R. B., Sathyendranath, S., Uitz, J., Watson, A. J., and Wolf-Gladrow, D. (2005). Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Global Change Biology, 11(11):2016-2040 list of model parameters (biology only, see manual http://lgmacweb.env.uea.ac.uk/greeneurocean/model/PlankTOM10.pdf for details): parameter arrays at the bottom of the list are in the order: diatoms, mixed phytoplankton, coccolithophores (, diagnostic nitrogen fixation, bacterial activity) rn_coccal = 0.433, CaCO3/C ratio attached coccoliths rn_degdoc = 0.018 , DOM degradation rate rn_degpom = 0.12 , POM degradation rate rn_discal = 0.75, loss of CaCO3 during coccolithophore loss rn_ferzoo = 5e-6, Fe/C ratio zooplankton rn_ggemes = 0.26 , GGE mesozooplankton rn_ggemic = 0.3 , GGE microzooplankton rn_gmegoc = 0., grazing preference mesozooplankton for POCl rn_gmemic = 2.54 , grazing preference mesozooplankton for microzooplankton rn_gmepoc = 0.51 , grazing preference mesozooplankton for POCs rn_gmipoc = 0.13, grazing preference microzooplankton for POCs rn_grames = 0.31, maximum grazing rate at 0C of mesozooplankton rn_gramic = 0.92 , maximum grazing rate at 0C of microzooplankton rn_grkmes = 2.6E-7 , K1/2 of grazing mesozooplankton rn_grkmic = 6.4E-6 , K1/2 of grazing microzooplankton rn_grtmes = 1.059, Q10^0.1 of grazing mesozooplankton rn_grtmic = 1.055, Q10^0.1 of grazing microzooplankton rn_kmfbac = 0.025E-9, K1/2,Fe of bacterial degradation of OM rn_kmobac = 5.E-6, K1/2,OM of bacterial degradation of OM rn_kmpbac = 1.E-7, K1/2,PO4 of bacterial degradation of OM rn_kmsbsi = 20.E-6, K1/2,Si of Si/C production by diatoms rn_mormes = 0.053, mortality rate at 0C of mesozooplankton rn_motmes = 1.071, Q10^0.1 of mortality rate of mesozooplankton rn_resdia = 0.1, nutrient limited loss rate of diatoms rn_resmes = 0.008, respiration rate at 0C of mesozooplankton rn_resmic = 0.036 , respiration rate at 0C of microzooplankton rn_resphy = 0.01, respiration rate of phytoplankton rn_retmes = 1.122, Q10^0.1 of respiration rate of mesozooplankton rn_retmic = 1.092, Q10^0.1 of respiration rate of microzooplankton rn_sigmes = 0.68, inorganic fraction of mesozooplankton loss rn_sigmic = 0.66, inorganic fraction of microzooplankton loss rn_sildia = 4.e-6, K1/2,Si of growth of diatom rn_unames = 0.3 , unassimilated food mesozooplankton rn_unamic = 0.13 , unassimilated food microzooplankton rn_alpphy = .79e-6, .83e-6, 1.25e-6, alpha^Chl of phytoplankton rn_docphy = 0.05, 0.05, 0.05, fraction of primary production as DOC rn_gmephy = 2.24, 0.45, 1.12, preference of mesozooplankton for phytoplankton rn_gmiphy = 0.26, 1.29, 1.03, preference of microzooplankton for phytoplankton rn_kmfphy = 5.2E-9, 0.2E-9, 2.6E-9, K1/2,Fe of growth of phytoplankton rn_mumpft = 0.33, 0.16, 0.23, 0.6, 0.6, maximum growth rate at 0C of PFTs rn_mutpft = 1.068, 1.076, 1.053, 1.066, 1.071, Q10^0.1 of growth of PFTs rn_rhfphy = 29., 29., 29., increase in Fe uptake rate of Fe limited phytoplankton rn_thmphy = 0.68, 0.25, 0.2, maximum Chl/C of phytoplankton rn_qmaphy = 47e-6, 20e-6, 45e-6, maximum Fe/C of phytoplankton rn_qmiphy = 2.5e-6, 2e-6, 3.7e-6, minimum Fe/C of phytoplankton rn_qopphy = 3.2e-6, 3e-6, 5.9e-6, optimum Fe/C of phytoplankton variable names and units: See HI04_PlankTOM5_3_hindcast_variables.xls experimental set-up: atmospheric forcing: NCEP reanalysis atmospheric CO2: average of Mauna Loa and Palmer biogeochemical forcing: river inputs of DIC, alkalinity, DOC, PO4, SiO3 and Fe [Cotrim da Cunha et al., 2007] sediment input of Fe and dust input of Fe and SiO3 [Aumont et al., 2003] physical initialisation: T, S World Ocean Atlas 2005 ice extent, thickness and snow thickness [Zhang and Rothrock, 2003] biogeochemical initialisation: PO43-, SiO3- and O2 World Ocean Atlas 2005 DIC and alkalinity outside the Arctic Ocean with GLODAP gridded data; DIC in the Arctic Ocean with GLODAP bottle data (Available at http://cdiac.ornl.gov/ftp/oceans/GLODAP_bottle_files/Atlantic.GLODAP.V1.1.Z. Observations north of 60°N were horizontally averaged and then applied over the Arctic Ocean). DIC concentrations were corrected for anthropogenic increases since 1948. Other tracers were initialized with the output of the previous model version Reference: Buitenhuis, Erik, Taketo Hashioka, Corinne Le Quéré (in preparation) Combined constraints on ocean primary production and phytoplankton biomass from observations and a model. Global Biogeochemical Cycles